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Periodic orbit assignment for spectra of highly
excited molecular systems

By Evt PoLLakft
Department of Chemistry, Columbia University, New York, New York 10027, U.S.4.

Recent experiments in high-energy molecular spectroscopy have shown that coarse
grained molecular spectra are often very simple, characterized by a few frequencies
or correlation times. Experiments in molecular scattering such as the hydrogen
exchange reactions have demonstrated the existence of short-lived resonances. I
show that these seemingly differing experiments may be interpreted and assigned in
terms of the normal modes of periodic orbits, which are determined by a linear
stability analysis. Specific examples include three-dimensional resonances of the
hydrogen exchange reaction as well as three-dimensional high-energy bound states
of the H} molecular ion. A new semiclassical quantization method based on
unstable periodic orbits is presented and used to explain the observed scarring of
high-energy quantum states.

1. Introduction

The standard approach to analysis of molecular spectra is an expansion about the
normal modes of the molecule. These are determined by finding the minimum of the
Born-Oppenheimer potential energy surface, expanding up to quadratic terms about
the minimum and diagonalizing the resulting quadratic hamiltonian (Wilson ef al.
1955). Nonlinear corrections are then found by extending the normal mode
approach, using for example a Darling—-Dennison expansion (Darling & Dennison
1940). This methodology has been extremely useful to spectroscopists and serves as
the basis for analysis of experimental spectra.

The high overtone spectra of some simple molecules such as H,0O or C,H, have
revealed that at times it is more convenient to analyse spectra in terms of local bond
stretching modes such as an OH stretch or a CH stretch (Lawton & Child 1979, 1980,
1981). Much work has been devoted in recent years towards understanding these two
different approximations. Analysis of the classical dynamics of these types of
molecules has shown that at very low energies one will usually find as many periodic
orbits as there are normal modes. For example, in CO, one will find a symmetric and
antisymmetric stretch periodic orbit. However, as energy is increased, the symmetric
stretch orbit undergoes a bifurcation giving two new orbits, which correspond to the
local mode motion in the sense that their configuration space path is roughly along
the local bond stretch (Lawton & Child 1979, 1980, 1981). Although two different
classification schemes do lead to complications, recent work by Kellman (1985) has
shown that the nonlinear terms in the normal mode expansion of the hamiltonian will
give at higher energies local mode type motion, thus ‘rescuing’ the normal mode
approach to molecular spectroscopy.
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Six years ago, Carrington & Kennedy (1984) reported their study of the
photodissociation spectrum of the Hj molecular ion. They found approximately
27000 lines corresponding to transitions between metastable states (with respect to
dissociation into H,+H™") confined to a spectral region of less than 300 cm™.
Assignment of these lines was impossible. Amazingly though, upon suitable coarse
graining of the spectrum, they found a very simple structure, four somewhat
broadened peaks with a constant spacing of 53 em™. This spacing has nothing in
common with the normal mode frequencies of ground state Hj.

Since then a number of other high energy molecular spectra have been measured
in some detail, usually using the stimulated emission pumping (SEP) technique
pioneered by Field, Kinsey and co-workers in their study of the high energy spectrum
of acetylene (Abramson et al. 1985). Other examples, are the sgp study of the Na,
molecule by Whetten, Woste and co-workers (Broyer et al. 1989) and the absorption
spectrum of O, in the Hartley band (Freeman ef al. 1984). In all these cases, the
spectra include many lines that seem to be unassignable ; however, coarse graining or
limited Fourier transforms of the spectra reveal characteristic frequencies and
correlation times that are not necessarily related to the normal modes of the
molecule.

The ‘simplest’ example for this type of behaviour is the high energy absorption
spectrum of the hydrogen atom in a strong magnetic field (the quadratic Zeeman
effect (Qzr)) measured by Welge and co-workers (Holle et al. 1988 and reference
therein) and analysed theoretically in great detail by Wintgen (1988) and co-workers.
A limited Fourier transform of the spectrum revealed correlation times which could
be identified with periods of a class of periodic orbits. Quantum mechanical studies
showed that wavefunctions tended to scar around these unstable orbits, in a manner
reminiscent of the scarring found by Heller (1984) in his study of quantum billiards.

Much theoretical and experimental work has been devoted in recent years to
transition state spectroscopy. Here one is attempting to probe the dynamics of a
short-lived intermediate in a reactive process. A recent experimental result has been
obtained by Nieh & Valentini (1988), who detected structure in the reactive cross-
section that may be attributed to the resonances found in theoretical computations
of the reaction probability. These resonances were first noted in collinear H+H,
scattering computations (Wu et al. 1973 ; Schatz et al. 1973) but have subsequently
been shown to exist also in the full three-dimensional scattering dynamics (Walker
et al. 1978; Webster & Light 1986). In common with the spectra of high-energy
molecules, the spacings between various resonance energies are not related directly
to either the asymptotic properties of the reactant or product molecules nor to the
normal mode frequencies of the saddle point of the potential energy surface.

Pollak & Child (1981) provided an assignment of the collinear resonance energies
in terms of what they called a resonant periodic orbit (rRPo) whose motion
corresponds to a strongly perturbed antisymmetric stretch motion. The major
qualitative difference between the RPo and normal mode or local mode orbits found
in bound molecules is that the rRPo is unstable, classical trajectories initiated in its
vicinity move away from the orbit, ultimately dissociating. This analysis revealed a
‘scarring’ of the quantum resonance wavefunction about an unstable periodic orbit,
prior to the discovery of scars in the billiard problem (Heller 1984).

More recent three-dimensional computations showed the full structure of the
resonance. The peaks in the time delay found by Kuppermann and co-workers
(Cuccaro et al. 1989) give a well defined theoretical determination of the three-
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Periodic orbit assignment 345

dimensional resonance energies. These peaks can be assigned in terms of the
properties of the rRros (Pollak & Wyatt 1982, 1984; Pollak 1986). Specifically,
linearizing the classical equations of motion around the RPO enables the deter-
mination of the stability frequencies of the orbit. All resonance energy spacings
found in the zero total angular momentum computations were assigned accurately
in terms of these frequencies. The dependence of the resonance energies on the total
angular momentum was also predicted from the average moment of inertia of thie
RrPOs and was subsequently found to be in good agreement with exact quantal three-
dimensional computations (Zhao et al. 1989). The resonance spectrum of the
hydrogen exchange reaction is the first example of periodic orbit assignment of a high
energy species, here the energy is so high that the species is only short lived, of the
order of one or two vibrational periods of the rpo.

The purpose of this paper is to suggest that periodic orbit assignment of coarse
grained spectra is the natural extension of the normal mode assignment of low-
energy spectra. The normal mode method is based on an harmonic expansion around
a stationary point of the potential energy surface. For small molecules, this is the
unique minimum of the surface. As energy is increased, one moves far away from this
minimum. However, even at high energies the classical dynamics do have invariant
objects, these are the periodic orbits. A harmonic expansion about the periodic orbits
provides what may be called the local normal modes of the periodic orbit. In this
paper we will demonstrate, for a number of systems, that these local normal modes
can provide the basis for analysis and assignment of high-energy coarse-grained
spectra. The numerical results described in this paper have been reported previously
elsewhere. The new elements presented in this paper are: (a) the unifying principle;
seemingly diverse systems are found to have a common element, assignment in terms
of local normal modes of periodic orbits, and (b) a new periodic orbit quantization
method is presented. This method provides insight into quantum localization around
unstable periodic orbits. ‘ ‘

In §2 we review recent results found for resonances in reactive scattering. These
include the hydrogen exchange reaction for which the surface is characterized by a
saddle point, and a model two-degree-of-freedom system which involves reaction on
a surface with a relatively deep potential energy well mediating between reactants
and products. In §3, we move to a bound state system, assigning the quantum states
of the two degree of freedom hamiltonian of C,, H as well as the non-rotating three-
dimensional high-energy states of HJ. In §4 we review briefly recent results on a
model two degree of freedom problem involving a quartic potential energy surface,
and propose a new method for periodic orbit semiclassical quantization which is
applicable to families of unstable periodic orbits.

2. Resonances in reactive scattering
(@) Linear stability analysis of periodic orbits

The main theme of this paper is that a linear stability analysis of periodic orbits
provides the normal mode frequencies which appear in high energy molecular
spectra. We review briefly the main elements of stability analysis of periodic orbits
(Miller 1975). Consider a system with N degrees of freedom, described by coordinates
q;, conjugate momenta p; (¢ = 1,...,N) and hamiltonian H(q,p). A periodic orbit is a
classical trajectory that originates at time ¢ = 0 at the phase space point (g,,p,) and
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returns to it at time 7. The frequency of the orbit is denoted w = 2n/7. Linearizing
the equations of motion about the orbit leads to the 2N x 2N matrix differential
equation

d/d¢eR()+F(t) B(t) =0, R(0) =1, (1)

where the 2N x 2N force constant matrix F(¢) is determined by the second derivatives
of the hamiltonian, taken along the periodic orbit,

_ a2 A2 2
=[ 02H /dp oq E)H/ap] 2)

0*H /oq*® 0*H/0q op

and [ is the 2V x 2N identity matrix. Integrating (1) for one period gives the matrix
R(T) which has 2N eigenvalues that come in pairs denoted e*“(; = 1,...,N). The
exponents u; are known as the characteristic exponents. The eigenvectors associated
with the eigenvalues are the periodic orbit analogues of the normal modes. The
important properties associated with the characteristic exponents are:

(a) if Reu; =0 for all ¢ =1,...,N then the periodic orbit is stable;

(b) if for any 4, Rewu; # 0 the orbit is unstable;

(¢) the characteristic exponents are invariant under a canonical transformation of
coordinates and momenta.

Typically, there are no severe numerical complications involved in integrating the
linearized equations. As long as the orbit and its period are known with sufficient
accuracy any standard integration package, which is in any case used to find the
periodic orbit, suffices. The only complication has to do with the absolute phase of the
exponent. If the jth exponent is purely imaginary then any numerical method based
only on the specific solution of the linearized equations can determine the phase up
to mod (2r). For the normal mode analysis it is necessary to determine the absolute
phase. This may lead to some complications, whose solution is described in detail in
Stefanski & Pollak (1987, 1989) and Tennyson et al. (1990). If the absolute phase ¢,
is known, i.e. u; = i¢; then one may define the stability frequency of the jth mode
as wy = ¢,;/T.

A semiclassical approximation for energies of quantum states localized around the
orbit is easily obtained in terms of the stability frequencies (Stefanski & Pollak 1987).
One first quantizes the action J along the orbit, such that J = (n+13)#% at the energy
K. The periodic orbit normal mode approximation for quantized energy levels is:

N-1
By =E,+ 2 (m;+3) tiwl(B,), (3)

J=1

where note has been taken that the stability frequencies themselves will change with
the energy of the periodic orbit. With each stability frequency there is associated an
eigenvector that gives the direction in phase space of the local normal mode.
Together they comprise the periodic orbit normal modes which can then be used to
assign the coarse grained molecular spectra.

(b) Resonances of the H+ H, reaction

The energy dependence of the quantum mechanical collinear (two degree of
freedom) reaction probability of the H+ H, reaction (on the PKII potential energy

Phil. Trans. R. Soc. Lond A (1990)
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Table 1. rPo assignment of H+H, resonance energies*

assignment, exact quantum® RPO° scsat
0,0%1 0.981 0.981 0.984
0, 2°, 0 1.191 1.186 1.196
0, 0°, 1.364 1.374 1.242
0, 2°, 1.55+0.03 1.545 1.464

* All energies are in eV relative to the bottom of the asymptotic H, well, on the LsTH surface.

 Zero total angular momentum exact quantum resonance energies as reported in Cuccaro et al.
(1989).

¢ rRPO estimates of resonance energies (cf. Pollak 1986).

¢ Estimates based on minimum energy path coordinates, taken from Garnett et al. (1984).

surface) showed peaks and dips at regular energy intervals of 0.43 eV (Wu et al. 1973;
Schatz et al. 1973 ; Kuppermann et al. 1980). These undulations were interpreted as
resonances, subsequent analysis of the quantum time delay matrix showed peaks in
the time delay which coincided with the ‘bumps’ in the reaction probability.
Analysis of the periodic orbits of the system revealed that the rPo had a frequency
of w =0.215 eV (Pollak & Child 1981). Since the reaction is symmetric, one expects
that this frequency will lead to a spacing of resonance energies that corresponds to
2fiw in good agreement with the quantum results (similar agreement is also found for
the LsTH potential energy surface). Since the motion of the rPo is a perturbed
antisymmetric stretch one uses the standard spectroscopic notation and denotes this
frequency as v,.

The rPO is unstable with respect to perturbation in the collinear plane, however it
is stable with respect to angular perturbation. The ‘bend’ stability frequency (on the
LsTH surface) is found to be 0.090 eV and 0.081 eV for v, = 1,2 respectively (Pollak
1986). The normal mode spectroscopic notation for this frequency is v,. Recent full
three-dimensional quantum computations at zero total angular momentum on the
same surface revealed this predicted substructure of resonances energies (Cuccaro
et al. 1989). In addition to the collinear spacing which had been associated with the
antisymmetric stretch frequency, an additional smaller spacing had been observed,
in good agreement with the v, frequency predicted from the stability analysis of the
rRPO. In table 1 we list the observed three-dimensional quantum mechanical
resonance energies, using the spectroscopic notation and compare with energies
predicted from the normal mode analysis of the RPo. The RPO predictions are at
present more accurate than any other adiabatic approximation method. For
example, we also tabulate the scsa results of Truhlar and co-workers (Garrett et al.
1984) which are based on an arbitrary coordinate system, guided by the minimum
energy reaction path. For the lower resonances, they get reasonable results, but as
the energy increases, the resonances move further away from the reaction path
leading to substantial deviation from the exact quantum results. The rRPo normal
modes are energy dependent and account correctly for the higher energy resonances.

The rotational dependence of the resonance energy may be predicted in terms of
the moment of inertia of the rro (Pollak & Wyatt 1982, 1984). The rotational
constant thus obtained for the (0,0° 1) resonance is 8 cm™ (Pollak & Wyatt 1982,
1984; Pollak 1986), in excellent agreement with recent full three-dimensional
quantum computations (Zhao et al. 1989). (The rotational constant inferred from the
results of Zhao et al. (1989) is 8.5+ 1 ecm™!. It is interesting to note that Zhao et al.

Phil. Trans. R. Soc. Lond A (1990)
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were not aware of the predictions for the constant presented in Pollak & Wyatt
(1982, 1984) and Pollak (1986).) For resonance energies with higher values of the v,
quantum number, the RPO becomes more extended, with a larger moment of inertia
so that the rotational constant decreases. For the (0,0°,2) resonance we predicted a
rotational constant of 7 cm™, this prediction remains to be verified.

(¢) Resonances for collinear ABA molecules

The structure of resonances for scattering of A+ BA on a potential energy surface
with a deep well in the interaction region is much richer than in the case of a direct
reaction such as H+ H,. Manz and co-workers (Bisseling et al. 1987) have published
a series of papers in which they elucidated all collinear resonances found for a model
A+ BA system, for which the potential surface exhibits a well depth of 0.76 eV.
Many of the resonance wavefunctions were found to be localized around a
hyperspherical radius, hence the name hyperspherical resonances (Bisseling et al.
1987).

We have recently studied the periodic orbit structure for this system (Stefanski &
Pollak 1989) and found that the periodic orbit corresponding to the antisymmetric
stretch normal mode at low energies, evolves into a hyperspherical like orbit as the
energy is increased. Its motion in configuration space is actually quite similar to that
of the rro in the H+ H, reaction, except that because of the well the cnergy in the
mode is much larger. This orbit was found to be stable at all energies below the
threshold of dissociation into A+ B+ A. Semiclassical quantization of the orbit,
based on (3), gave excellent agreement with all hyperspherical quantum resonance
energies, including cases in which the normal mode perpendicular to the orbit has an
excitation. Since the range of energies spanned by this analysis is very large, one
finds that the periodic orbit normal mode frequencies change by an order of
magnitude, becoming smaller as the energy is increased. Here again, although the
normal modes found at the bottom of the potential energy well are not relevant for
analysing the high-energy dynamics, the periodic orbit normal modes are sufficient.

The usefulness of the periodic orbit normal modes might at first glance seem to be
not too surprising. When an orbit is stable and the regular phase space surrounding
it is large enough, one expects standard semiclassical EBK quantization (Lichtenberg
& Lieberman 1983) to work. The linearization around the orbit provides a harmonic
approximation to the EBK quantization. However, we also studied the phase space
surrounding the orbit and found that at all energies above dissociation the regular
part of phase space surrounding the orbit is substantially smaller than the n# necded
for EBK quantization. Moreover, the shape of stable tori surrounding the orbit
differs substantially from the elliptic form predicted by a harmonic expansion about
the orbit. Thus although the classical analysis seemingly implies that the
linearization about the periodic orbit will not work too well, we still find excellent
agreement between the quantum resonance energies and the periodic orbit normal
mode predictions.

3. High energy states of Hj

(a) Reduced dimension C,, states

The coarse grained photodissociation spectrum of H} measured by Carrington &
Kennedy (1984) has been recently assigned in terms of periodic orbit normal modes.
Berblinger et al. (1988) in their (zero total angular momentum) classical study of the

N

Hj system, found a periodic orbit with C,, symmetry which is stable in the full three-
Phil. Trans. R. Soc. Lond A (1990)
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dimensional space. The motion of this orbit corresponds to a large amplitude bending
motion of the molecule about the collinear plane. Since the configuration space path
of the orbit in Jacobi coordinates resembles a horseshoe it was nicknamed the
horseshoe orbit. Gomez Llorente & Pollak (1988, 1989) showed that this orbit
remained stable even when the two outer hydrogen atoms were rotated such that the
angular momentum vector was along the H* to the centre of mass of H,, coordinate
(R). The rotational constant for this motion was 25-30 em™ (depending on the
potential energy surface used) leading to a constant spacing of 50-60 cm™ in the R
branch associated with the infrared active antisymmetric stretch mode of the
horseshoe orbit. The antisymmetric stretch (v,) frequency was found to be
approximately 600 cm™'. The coarse grained experimental spectrum was thus
assigned as part of the R branch of the antisymmetric stretch mode of the horseshoe
orbit with rotational quantum numbers in the range of 5.

This interpretation and assignment of the high-energy coarse grained spectrum
relies heavily on the assumption that structure in high-energy spectra is a result of
periodic orbit normal modes. Since the horseshoe orbit was found to be stable, it is
plausible that it will give rise to structure in the spectrum, however, the quantum
mechanism that leads to this structure has not yet been clarified. Taylor and
coworkers (Taylor & Zakrzewski 1988; Gomez Llorente ef al. 1989) have proposed
that periodic orbits identify a region of classical phase space which is relatively
decoupled from the rest of space. By using a Feshbach formalism, they construct a
local basis set in this region which serves as a P subspace of resonance states which
are then broadened by coupling to the background states. Applying these ideas to Hj
they showed (Gomez Llorente et al. 1989) that for motion restricted to the C,,
configuration one indeed finds stabilized quantum states localized around the
horseshoe. Farantos and coworkers (Founargiotakis et al. 1989) have recently
demonstrated quantum localization around periodic orbits, which is explained in
terms of short-time classical localization.

To understand the connection between the periodic orbit normal mode picture and
quantum mechanics, Tennyson et al. (1990) have studied in detail all the bound
quantum states of Hj in the reduced, two degree of freedom C,, subspace. Two
potential energy surfaces were used. The qualitative behaviour found on the accurate
ab initio Meyer et al. (1986) (MBB) surface was very similar to that found on the more
approximate diatomics in molecules (piM) surface (Preston & Tully 1971). The
advantage of the latter is that it is well defined for all energies while the MBB surface
is well defined only up to 25000 cm™! above the ground state. In the following we
present results only for the prm surface.

The quantum states of the C,, hamiltonian have even and odd symmetry with
respect to reflection about & = 0. A total of 148 bound states with odd symmetry were
found. The typical structure of these wavefunctions is shown in figure 1 where the
configuration space plots of 16 consecutive high-energy odd states are presented.
Visual inspection shows that these states may be divided into three groups. States
113, 115, 116, 118121, 123, 125, 126 and 128 have no clear nodal structure and so
cannot be assigned in any obvious way. States 114, 122 and 127 are localized around
the horseshoe orbit (shown as a solid line). State 114 has two excitations in the mode
perpendicular to the orbit, state 122 has no excitations while state 127 has one
excitation. By using the spectroscopic notation of v, for the excitations perpendicular
to the orbit, a nodal count shows that these states may be assigned as (2,14), (0,17)
and (1,16) respectively. Their energies are 30980.7, 32124.4 and 32658.7 cm™

Phil. Trans. R. Soc. Lond A (1990)
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respectively. A semiclassical quantization of the horseshoe orbit based on (3) gives
the energies 31324.5, 32140.5 and 32772.4 cm ™! respectively. Note the very good
agreement between the semiclassical estimate and the exact quantum energy for the
(0,17) state. This quality is typical of all horseshoe states with v, = 0. The average
spacing between quantum levels in this energy region is 150 em™! so that the
accuracy of the periodic orbit quantization is quite impressive. When the v, mode is
excited, the semiclassical estimate is not as good, the harmonic approximation
consistently leads to an overestimate of the energy. Clearly, for these excitations,
what is needed is an anharmonic expansion.

Figure 1. High-energy (odd) quantum states of C,, H;. The vertical and horizontal axes are the

mass weighted coordinates 7, R respectively, defined as # = ar, 8 = Rjo,a = (%)“‘. Here, », R are
the usual Jacobi coordinates, r is the distance between the two H atoms, R is the distance of H*
to the centre of mass of the two H atoms. The C,, configuration is such that r is perpendicular to
R. The range is from 0-5 atomic units (a.u.), each tick mark denoting 1 a.u. Dashed and solid
contours show negative and positive values of the wavefunction respectively and are at 0.64, 0.32,
0.16 and 0.08 of the maximum amplitude. The solid lines for states 114, 122 and 127 show the
configuration space path of the quantized horseshoe orbit used to assign these states. Adapted
from Brass et al. (1990).

The large number of unassignable states indicates that probably the majority of
classical phase space is chaotic. We find, at this energy range that the regular region
of phase space surrounding the horseshoe orbit is approximately 24 which is less than
the n/ needed even for the ground v, state. Thus the excellent agreement between the
Phil. Trans. R. Soc. Lond A (1990)
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periodic orbit semiclassical quantization and the exact quantum energies remains a
mystery, similar to the case of the resonances in ABA scattering presented in above.

States 117 and 124 shown in figure 1 are localized around what may be thought of
as an inverted hyperspherical mode. The orbit corresponding to this motion is
weakly unstable at these energies so that the localization is again poorly understood.
Qualitatively, we expect the results presented here to be typical of high energy
vibrations. Most states are unassignable, contributing to the Q space as a broad
background. One does find though manifolds of states localized around some special
periodic orbit families, these few families may be assigned in terms of the normal
modes of their respective orbits.

(b) Three-dimensional states of non-rotating Hi

The classical study of the rotating horseshoe orbit (Berblinger 1988; Gomez
Llorente & Pollak 1988, 1989) showed that it was stable even in three dimensions at
energies close to the dissociation energy into H*+H,. However, the orbit is not
stable at all energies, it goes through alternating phases of stable and unstable
behaviour, similar to the solutions of the Mathieu equation. Although three-
dimensional surfaces of section were not computed, it was obvious that the stable
area in phase space surrounding the orbit was much smaller (per degree of freedom)
than in the C,, case. A very small angular perturbation (typically of the order of
107? radians) away from the C,, configuration sufficed to destabilize a trajectory. It
was therefore of interest to see whether the quantum localization found in the
reduced dimension C,, system would persist also in three dimensions.

By using the three-dimensional programs of Tennyson & Henderson (1989), Brass
et al. (1990) studied the three-dimensional quantum states of H} at J = 0. For states
with energy up to 25000 cm™ above the ground state, convergence of the order of
10 em™! was obtained, for higher lying states, we could not assure convergence in a
variational sense. Even for these not fully converged states, the average spacing
between adjacent energy levels at 3000 cm™ below the dissociation threshold was
approximately 25 cm™!,

The projection of the three-dimensional wavefunctions on the 7, B plane keeping
the bend angle (y) fixed was qualitatively very similar to the C,, case. Most states
were unassignable ; however, a sequence of states localized around the horseshoe mode
appeared very clearly. Changing y by 30° away from 90° did not alter significantly
the structure of these horseshoe states, indicating that they were in the ground state
with respect to the antisymmetric stretch (denoted »;) motion. Although, as
mentioned for high energies, the quantum computation was not fully converged, 1
believe that the energies and wavefunctions of the localized ‘horseshoe states’ are
reliable in the sense of a stabilization computation. The basis set used, covers the
horseshoe orbit region adequately. Indirect evidence for the adequate convergence
was the fact that we could again obtain very good agreement between the periodic
orbit based semiclassical prediction and the exact quantum energies.

There is, though, one major difference between the three-dimensional results and
the C,, case. In the three-dimensional case, the assignment provided by the periodic
orbits was not unique. For example the semiclassical prediction for the energy of the
(0,17,0) state was 35505 cm™'. However, five quantum states, at the energies 35364,
35406, 35433, 35477 and 35542 cm™! were found with the nodal structure that
corresponds to this assignment. This result confirms the Feshbach resonance theory
of Taylor and co-workers. We find that because of the high density of states, the
Phil. Trans. R. Soc. Lond A (1990)
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‘resonance’ state localized around the horseshoe has a ‘width’ and so has a
non-negligible projection onto those quantum states whose energy roughly coincides
with the resonance energy.

The main conclusions of the three-dimensional study are generally a reaffirmation
of the results found in the C,, case. A series of localized states could be identified
and assigned through the nodal pattern. These states were localized around the
horseshoe orbit even at energies for which the horseshoe orbit was unstable with
respect to the v, mode.

All these results corroborate the suggested interpretation for the experimental
coarse grained spectrum. Close to the threshold for dissociation (at the energy of
the v, = 20 orbit) the normal mode frequencies of the horseshoe orbit are 2632, 967
and 616 cm™' respectively. These frequencies are still large in comparison with the
rotational frequency of the rotating horseshoe orbit at j = 5, which is ca. 300 em ™.
One may thus expect a good adiabatic separation between the rotational motion and
the internal modes, leading to quantum localization around the horseshoe even in the
presence of rotation.

It is to be expected that a ladder of localized states will lead to prominent features
in the coarse grained spectrum. A recent reduced dimensionality study of the D}
system (Sepulveda et al. 1990) demonstrates such a connection between the coarse
grained spectrum and a ladder of localized states. In principle, one may find more
than one type of localization as can be inferred from the C,, wavefunctions presented
in figure 1 (see especially states 117 and 124). However, in the three-dimensional
study of the Hj system we found that the only really recognizable ladder was
associated with the horseshoe mode. Even if another ladder is found (my
computations were not fully converged at the high energy end of the spectrum) it will
not necessarily interfere with the coarse grained features associated with the
horseshoe orbit localization. I thus conclude with the observation that the R branch
of the spectrum associated with the v, mode of the horseshoe orbit will lead to equally
spaced peaks with a spacing of ca. 50-60 cm™. This provides an assignment of the
experimental spectrum in terms of the horseshoe orbit normal modes.

4. A semiclassical theory of scars
(@) A quartic oscillator model

Perhaps the most puzzling aspect of all results presented thus far is the fact that
quantum states localize around unstable periodic orbits. For the hydrogen exchange
reaction this localization has been explained in terms of a vibrationally adiabatic
well. Pollak & Romelt (1984) have demonstrated that the rro lies at the bottom of
a vibrationally adiabatic well so that although the orbit is unstable in the Liapunov
sense it is stable in an adiabatic sense. A linear stability analysis reflects the infinite
time behaviour of classical trajectories in the vicinity of the orbit. Quantum
dynamics in the semiclassical limit are necessarily determined by finite time
dynamics. If for finite time (usually of the order of a few periods of the orbit) one
remains localized classically around the orbit then one may expect a quantum
localization to occur. A plausible conjecture is therefore that the scars phenomenon
is just a reflection of short time classical dynamics and will occur whenever the
adiabatic stability of a periodic orbit is sufficient to localize classical trajectories in
Phil. Trans. R. Soc. Lond A (1990)
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the surrounding of the orbit for a time which is of the order of the period of the orbit
itself.

To quantify this conjecture one needs to answer the following questions. (¢) How
does one obtain the best possible classical adiabatic breakup in the vicinity of the
orbit ? (b) How does one extract from this breakup an adiabatic hamiltonian which
can then be quantized semiclassically ? (¢) How does one estimate the quality of the
classical adiabatic approximation to determine whether or not quantum localization
will occur ?

23.5759 238772

Figure 2. Quantum states of the quartic oscillator. Quantum energies of each eigenstate are in
reduced units (¥, = 0.5, see text). Only A, symmetry states are shown. A more complete set of
figures of eigenstates may be found in Eckhardt et al. (1989).

To answer these questions Eckhardt et al. (1989) have studied in some detail the
classical and quantum dynamics of the following model quartic oscillator system.
The two degree of freedom hamiltonian is

H = §(ps+py) + 2%+ +y), (4)
where the parameter f = 0.01. With this choice, the classical dynamics are chaotic,
all periodic orbits we find are unstable in the Liapunov sense. This hamiltonian has
an important simplifying feature, because of the homogeneity of the kinetic and
potential terms, the classical dynamics scale according to the energy. It suffices

therefore to study the classical dynamics at only one energy, taken arbitrarily as
E,=0.5. One finds that the action S(e) scales linearly with the reduced energy e:

S(e) = 8(0) ¢, €= (E/E,). (5)

The quantum eigenstates of this hamiltonian may be classified according to the
symmetry classes of the C,, group. In figure 2 we show some typical configuration
space plots for higher lying states with A; symmetry. One immediately notes that
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states 55 and 60 are scarred along the channels. Each channel supports a straight line
periodic orbit so that again we have found an example of scars along unstable orbits.

A systematic study of the periodic orbits of this system showed that there are
many periodic orbits that are localized around the central channel orbit, an example
of one of these is shown in figure 4a. These orbits seemed to us to be the remnants
of broken KAM curves (Lichtenberg & Lieberman 1983) and so we used them to
obtain an approximate adiabatic hamiltonian in a novel way which stresses the fact
that the scars are not related to a single periodic orbit, but rather to a family of
orbits. Suppose that in fact the channel orbit were stable so that motion around it
were integrable. This would imply the existence of an adiabatic hamiltonian 4,4 such
that %,4(S),S,) = e. Thus an adiabatic approximation implies a functional relation
between two independent action variables denoted S| and S, where parallel and
perpendicular denotes the directions relative to the channel orbit. To obtain this
functional relation we decomposed the actions of all periodic orbits into their parallel
and perpendicular components and plotted each orbit as a point in the S|,.S, plane
as shown in figure 3.

06—

S.

SII

Figure 3. An effective adiabatic hamiltonian for the quartic oscillator, derived by the adiabatic
breakup of all computed periodic orbits. The solid line is a least squares fit. For further details, see
text and Eckhardt et al. (1989).

Since the scatter in the points in figure 3 is not very large, especially in the region
where ;> 8, one can fit a curve using a least squares criterion and then use this
curve to derive the adiabatic hamiltonian. This integrable hamiltonian is then
quantized using the usual EBK quantization conditions, that is S, = (m+3)# and
S, = (n+3)#, where n, m are integers. The agreement obtained in this way is good,
for example, the adiabatic approximation for the energies of states 55 and 60 shown
in figure 2 is (in reduced energy units) 22.948 and 23.908 respectively, while the exact
quantum energies are 22.907 and 23.875 respectively. The average spacing between
quantum levels in this range is 0.2, much larger than the error in the prediction of
the individual eigenstates.

Phil. Trans. R. Soc. Lond A (1990)
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Beyond the good agreement, this method has the added advantage over standard
adiabatic breakups (Chang 1984 ; Martens et al. 1989) in that it predicts also when the
adiabatic approximation can no longer be used to assign single eigenstates. The
(scaled) energy dependence of the classical density states is p = 2¢. At ¢ = 20 the
mean spacing between quantum levels is therefore 0.025, taking the quantum
symmetry into consideration leads to a mean spacing of 8 X 0.025 = 0.2 for a given
symmetry subgroup. From the standard deviation of the fit one can estimate
whether the uncertainty in the resulting quantized energy is greater or less then the
mean level spacing. If less, then the adiabatic hamiltonian is meaningful and can be
used to predict and assign single quantum states even though the classical dynamics
are chaotic. :

L s

0.5

Figure 4. Approximate KAM curves constructed from stable and unstable manifolds of an unstable
periodic orbit. The orbit is shown as an inset in panel (a). Panel (b) shows a surface of section of
the orbit (y = 0,p, > 0) and its time reverse (filled circles). The heavy lines are the computed (B.
Eckhardt, unpublished results) stable and unstable manifolds of the two orbits. The dotted line and
shaded area are schematic representations of the turnstiles formed after iteration of one period. For
further details, see text.

This method provides an internally consistent estimate for the breakdown of the
adiabatic approximation; however, it still suffers from one major defect, the
coordinate system chosen — parallel and perpendicular to the channel orbit — is still
arbitrary. We have not demonstrated that this is the best possible adiabatic
breakup. A remedy for this deficiency is proposed in the next section.

Phil. Trans. R. Soc. Lond A (1990) :
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(b) Semiclassical quantization of unstable periodic orbits

The main idea underlying the quantization method described below is that one
should use the classical dynamics themselves to identify the best possible adiabatic
breakup. Before going to the general case, it is useful to study again the quartic
oscillator. In figure 4a I plot the configuration space path of a typical periodic orbit
which is localized around the channel orbit. The solid circles in figure 45 show the
projection of this orbit and its time reverse on a surface of section. The dashed line
connecting the solid circles is arbitrary, but is meant to convey the impression that
the pair of orbits may be thought of as lying on a broken KAM curve. The adiabatic
approximation presented in the previous subsection really consists of constructing
such an arbitrary line. Here I propose instead that one should use the stable and
unstable manifolds of the orbit (Lichtenberg & Lieberman 1983) and their
intersections to construct the optimal adiabatic approximation for this orbit.

Consider the solid circles denoted 1, 2 in figure 45 and their stable and unstable
manifolds, (denoted by the heavy arrows). The intersection of the stable and
unstable manifolds of the two points forms a quadrilateral object whose mirror image
(obtained by reflection about p, = 0) is a quadrilateral joining points 10 and 1.
Integrating all points on the pair of quadrilaterals (one iteration) until they come
back to the surface of section for the first time, will move them so that they will
connect points, 3, 4 and 2, 3 respectively. Three further iterations will move the
quadrilaterals so that they adjoin points 9, 10 and 8, 9 respectively. In this manner,
for this specific orbit, four iterations will lead to two approximate KAM curves, an
inner curve enclosing an area S;- composed of the inner boundary of the quadrilaterals
and an outer curve enclosing an area S; composed of the outer boundaries of the
quadrilaterals. Flux conservation assures us that the area enclosed by each of the ten
quadrilaterals is identical.

A trajectory initiated within the region of the first quadrilateral, cannot escape
from the phase space bounded between the two approximate KAM curves before one
period (7') of the periodic orbit. Only after a fifth iteration, which will map the
quadrilateral between points 9, 10 back to a quadrilateral between points 1, 2, will
such a trajectory be able to escape. The probability of escape may be defined
(Mackay et al. 1984 ; Bensimon & Kadanoff 1984) as the ratio of the area of the two
turnstiles (hatched region in figure 4b) formed by the fifth iteration and the area
enclosed between the two broken KAM curves.

Thus far, there is nothing unique to this construction. Any arbitrary quadrilateral
object connecting points 1 and 2, would have the same properties. The reason for
using the stable and unstable manifolds to construct the approximate KAM curves
is in fact that of all possible quadrilaterals with the same area, the minimum escape
probability will be found for those constructed from the stable and unstable
manifolds (Bensimon & Kadanoff 1984). Thus, the present construction maximizes
the average time that a trajectory will spend with action between S5 and S .

One can repeat the same process, with the same orbit but on the surface of section
corresponding to the second degree of freedom. This will lead to the second pair of
‘action variables’ S5 and S . We define an average action for each degree of freedom
(8% and an action uncertainty AS, as

(80 =387 +87), A8, =87-87, i=1.2. (6)
It is possible to repeat this process for all periodic orbits up to a given time length,
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plot the two action variables and their uncertainties just as done in figure 3 and
extract the optimal adiabatic hamiltonian, which is then quantized with the usual
EBK prescription. The uncertainties in the actions will lead to an uncertainty in the
semiclassical energy, which may, however, still be smaller than the mean level
spacing. In this case, one will be able to assign individual quantum states in terms
of the adiabatic approximation and these states will localize in phase space around
the approximate EBK curves leading to the phenomenon known as scars. In
addition, one may evaluate the escape probabilities from the turnstile areas to
estimate the validity of the adiabatic approximation.

5. Discussion

The main result presented in this paper is that one can use periodic orbits and their
stability frequencies to assign experimental coarse grained spectra of small molecular
systems at high energies. Even when the classical dynamics are chaotic, we have
demonstrated for some very different systems that one will still find quantum states
that are localized around certain families of periodic orbits and which can be assigned
in terms of the periodic orbit normal modes. These scars were found in realistic three-
dimensional systems, which include both scattering resonances as in the hydrogen
exchange reaction as well as high-energy states in strongly bound molecules such as
H3. This localization leads to increased spectral intensities for the localized states
(Sepulveda et al. 1990), and so they will be reflected as peaks in a coarse grained
absorption or SEP spectrum.

The mechanism leading to this localization is the short time stability of classical
trajectories in the vicinity of an adiabatically stable periodic orbit. This short-time
stability can be quantified in terms of an adiabatic hamiltonian, which when
quantized semiclassically leads to good agreement with exact quantal energies of
states localized around the orbit. A general methodology for construction of
adiabatic hamiltonians has been proposed. The method stresses the short time nature
of the localizations and uses known results in nonlinear dynamics to estimate the
validity of the adiabatic approximation. In this way, one can predict whether a
family of periodic orbits will actually lead to quantum scars.

This adiabatic quantization method, which relies on intersections of stable and
unstable manifolds of unstable periodic orbits, may also be applied to cases where a
central orbit (such as the hyperspherical orbit in ABA scattering) is stable but the
regular regions of phase space surrounding it is too small for standard EBK
quantization. Outside the regular region, one will find unstable orbits whose stable
and unstable manifolds can be used to construct approximate KAM curves. In this
way one will be able to obtain anharmonic corrections for states with excitations
perpendicular to the central orbit.

The main drawback of the adiabatic quantization method is that it is limited to
two degree of freedom systems. It is not clear how one can efficiently generalize the
method to three or more degrees of freedom. However, the periodic orbit normal
mode approximation is easily applied to many dimensional systems so that we
expect the linear stability analysis of periodic orbits to be a powerful practical tool
for assignment of experimental high-energy coarse-grained spectra.
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